Quadrotor flying over mountains
Aerospace Computational Design Lab

The Aerospace Computational Design Lab's improves the design of aerospace systems through the advancement of computational methods and tools that incorporate multidisciplinary analysis and optimization, probabilistic and robust design techniques, and next-generation computational fluid dynamics. The laboratory studies a broad range of topics that focus on the design of aircraft and aircraft engines.

MIT Aerospace Controls Lab student with quadrotot
Aerospace Controls Laboratory

The Aerospace Controls Laboratory investigates estimation and control systems for modern aerospace systems, with particular attention to distributed, multivehicle architectures. Example applications involve cooperating teams of unmanned aerial vehicles or formation-flying spacecraft. The research goal is to increase the level of systems' autonomy by incorporating higher-level decisions, such as vehicle-waypoint assignment and collision avoidance routing, into feedback control systems. Core competencies include optimal estimation and control, optimization for path-planning and operations research, receding-horizon/model predictive control, and GPS.


The Astrodynamics, space Robotics, and Controls Laboratory (ARCLab), led by Professor Richard Linares, is part of AeroAstro's Space Systems Laboratory. Spaceflight is entering a period of renaissance, with considerable change in the perception of what humanity’s role in space will be. ARCLab conducts critical research and develops new solutions for the problems of Space Traffic Management and Space Situational Awareness. The technologies that are revolutionizing near-Earth spaceflight will provide new opportunities for deep-space exploration. ARCLab's research is in the intersection of autonomy, astrodynamics, and controls with application to space exploration. ARCLab focuses on the following research areas: astrodynamics, space situational awareness and space traffic management, satellite guidance and navigation, estimation and controls, reinforcement learning, optimal control.

Satellite network (NASA image)
Communications and Networking Research Group

The Communications and Networking Research Group's primary goal is the design of network architectures that are cost effective, scalable, and meet emerging needs for high data-rate and reliable communications. To meet emerging critical needs for military communications, space exploration, and internet access for remote and mobile users, future aerospace networks will depend upon satellite, wireless and optical components. Satellite networks are essential for providing access to remote locations lacking in communications infrastructure; wireless networks are needed for communication between untethered nodes, such as autonomous air vehicles; and optical networks are critical to the network backbone and in high performance local area networks.

CSAIL students with drone

CSAIL research is focused on developing the architectures and infrastructures of tomorrow’s information technology, and on creating innovations that will yield long-term improvements in how people live and work. Lab members conduct research in almost all aspects of computer science, including artificial intelligence, the theory of computation, systems, machine learning, computer graphics, as well as exploring revolutionary new computational methods for advancing healthcare, manufacturing, energy and human productivity.

Engineering Systems Laboratory
Engineering Systems Laboratory

The Engineering Systems Laboratory studies the underlying principles and methods for designing complex socio-technical systems that involve a mix of architecture, technologies, organizations, policy issues, and complex networked operations. Its focus is on aerospace and other systems critical to society, such as product development, manufacturing, and large scale infrastructures.

Instructor and students with gas turbine engine
Gas Turbine Laboratory

The MIT Gas Turbine Laboratory has had a worldwide reputation for research and teaching at the forefront of gas turbine technology for more than 60 years. GTL’s mission is to advance the state-of-the-art in fluid machinery for power and propulsion. The research is focused on advanced propulsion systems, energy conversion and power, with activities in computational, theoretical, and experimental study of: loss mechanisms and unsteady flows in fluid machinery; dynamic behavior and stability of compression systems; instrumentation and diagnostics; advanced centrifugal compressors and pumps for energy conversion; gas turbine engine and fluid machinery noise reduction and aero-acoustics; novel aircraft and propulsion system concepts for reduced environmental impact. Several experimental facilities include: a unique swirling flow test rig for centrifugal compressor diffuser analysis, a 15,000 SCFM continuous supersonic wind tunnel and air supply, a single-stage low-speed research compressor, a 500kW helicopter gas turbine engine test cell, a shock tube for reacting flow heat transfer analysis, and a range of one-of-a-kind experimental flow diagnostics. GTL also has unique computational and theoretical modeling capabilities in the areas of gas turbine fluid mechanics, turbomachinery, and aero-acoustics.

MIT Human Systems Laboratory Biosuit
Human Systems Laboratory

The Human Systems Laboratory (formerly the Man Vehicle Laboratory) optimizes human-vehicle system safety and effectiveness by improving understanding of human physiological and cognitive capabilities, and developing appropriate countermeasures and evidence-based engineering design criteria. Research is interdisciplinary, and uses techniques from manual and supervisory control, signal processing, estimation, sensory-motor physiology, sensory and cognitive psychology, biomechanics, human factor engineering, artificial intelligence, and biostatistics. HSL has flown experiments on Space Shuttle Spacelab missions and parabolic flights, and has several flight experiments in development for the International Space Station. NASA, the National Space Biomedical Research Institute, and the FAA sponsor ground-based research. Projects focus on advanced space suit design and dynamics of astronaut motion, adaptation to rotating artificial gravity environments, spatial disorientation and navigation, teleoperation, design of aircraft and spacecraft displays and controls and cockpit human factors. Annual HSL MIT Independent Activities Period activities include ski safety research, and an introductory course on Boeing 767 systems and automation. MVL faculty also teach subjects in human factors engineering, space systems engineering, space policy, flight simulation, space physiology, aerospace biomedical and life support engineering, and the physiology of human spatial orientation.

MIT Institute for Soldier Nanotechnologies
Institute for Soldier Nanotechnologies

The Institute for Soldier Nanotechnologies is a U.S. Army University-Affiliated Research Center. Its mission is to improve soldier survivability by extending the frontiers of nanotechnology via fundamental research and transitioning with Army and industrial partners. The ISN's charge is to pursue a long-range vision for how technology can make soldiers less vulnerable to enemy and environmental threats. The ultimate goal is to create a 21st century battlesuit that combines high-tech capabilities with light weight and comfort.

MIT Interactive Robotics Lab student with quadrotor
Interactive Robotics Lab

The Interactive Robotics Lab conducts research and develops technology to ease the integration of robotics and autonomous systems into human-centered work environments. This includes the design of algorithms for planning, decision-making, and control of autonomous systems that are modified to support safe, efficient and natural interaction with people. Research applications focuses on high-intensity and safety-critical applications including aerospace manufacturing, disaster response, and space operations.

Aircraft landing
International Center for Air Transportation

The International Center for Air Transportation undertakes research and educational programs that discover and disseminate the knowledge and tools underlying a global air transportation industry driven by new technologies. Global information systems are central to the future operation of international air transportation. Modern information technology systems of interest to ICAT include: global communication and positioning; international air traffic management; scheduling, dispatch and maintenance support; vehicle management; passenger information and communication; and real-time vehicle diagnostics. Airline operations are also undergoing major transformations.Airline management, airport security, air transportation economics, fleet scheduling, traffic flow management and airport facilities development, represent areas of great interest to the MIT faculty and are of vital importance to international air transportation. ICAT is a physical and intellectual home for these activities. ICAT, and its predecessors, the Aeronautical Systems Laboratory and Flight Transportation Laboratory, pioneered concepts in air traffic management and flight deck automation and displays that are now in common use.

Electric aircraft
Laboratory for Aviation and the Environment

The Laboratory for Aviation and the Environment addresses a major challenge facing the aviation industry today: understanding and reducing aviation’s environmental impacts. The lab advances our knowledge of how aviation impacts the environment and collaboratively develops mitigation strategies.Current research thrusts are:Evaluating the climate and air quality impacts of aircraft emissions. This includes quantifying the impact of airport emissions on near-airport air quality, aircraft cruise emissions on global air quality, and contrails on regional climate.Developing tools to enable designers, policymakers, and researchers to evaluate policy and design decision’s environmental implications, including a quantitative understanding of uncertainty. These tools are used to inform international policy negotiations.Environmentally optimizing both ground and en route operations. Examples include developing and testing procedures for minimizing ground fuel burn, computing the air quality impacts of controller decisions in real-time, and developing metrics for the environmental performance of aircraft.Assessing potential alternative jet fuels that can reduce adverse climate and air quality impacts. This involves assessing the lifecycle environmental impacts of alternative fuel production and use, as well as broader environmental and economic implications..

MIT Laboratory for Information and Decision Systems
Laboratory for Information and Decision Systems

The Laboratory for Information and Decision Systems is an interdepartmental research laboratory. It began in 1939 as the Servomechanisms Laboratory, an offshoot of the Department of Electrical Engineering. Its early work, during World War II, focused on gunfire and guided missile control, radar, and flight trainer technology. Over the years, the scope of its research broadened.Today, LIDS' fundamental research goal is to advance the field of systems, communications and control. In doing this, it recognizes the interdependence of these fields and the fundamental role that computation plays in this research. LIDS conducts basic theoretical studies in communication and control and is committed to advancing the state of knowledge of technologically important areas such as atmospheric optical communications and multivariable robust control. Its staff includes faculty members, full-time research scientists, postdoctoral fellows, graduate research assistants, and support personnel. Every year several research scientists from various parts of the world visit the Laboratory to participate in its research program.

Nano MIT

The necstlab research group explores new concepts in engineered materials and structures. The group's mission is to lead the advancement and application of new knowledge at the forefront of materials and structures understanding, with research contributions in both science and engineering. Applications of interest include enhanced (aerospace) advanced composites, multifunctional attributes of structures such as damage sensing, and also microfabricated (MEMS) topics. A significant effort over the past decade has been to use nanoscale materials to to enhance performance of advanced aerospace materials and their structures through the industry supported NECST Consortium.

MIT Robust Robotics Group
Robust Robotics Group

Our research goals are to build unmanned vehicles that can fly without GPS through unmapped indoor environments, robots that can drive through unmapped cities, and to build social robots that can quickly learn what people want without being annoying or intrusive. Such robots must be able to perform effectively with uncertain and limited knowledge of the world, be easily deployed in new environments and immediately start autonomous operations with no prior information.

MIT Space Propulsion Lab Professor Paulo Lozano
Space Propulsion Laboratory

The Space Propulsion Laboratory, part of the Space Systems Lab, studies and develops systems for increasing performance and reducing costs of space propulsion. A major area of interest to lab is electric propulsion, in which the electrical, rather than chemical energy propels spacecraft. The benefits are numerous and very important, that is the reason why many communication satellites and scientific missions are turning to electric propulsion systems. In the future these plasma engines will allow people to do such things as explore in more detail the structure of the universe, increase the lifetime of commercial payloads or look for signs of life in far away places. Other areas of research include microfabrication; numerical simulation, numerical simulation, Hall thrusters, space tethers, orbit optimization, spacecraft-thruster interactions and plasma waves emission and propagation.

Greg Chamitoff on the International Space Station with SPHERES micro satellites
Space Systems Laboratory

The Space Systems Laboratory engages in cutting-edge research projects with the goal of directly contributing to the current and future exploration and development of space. SSL's mission is to explore innovative concepts for the integration of future space systems and to train a generation of researchers and engineers conversant in this field. Specific tasks include developing the technology and systems analysis associated with small spacecraft, precision optical systems, and International Space Station technology research and development. The laboratory encompasses expertise in structural dynamics, control, thermal, space power, propulsion, microelectromechanical systems, software development and systems. Major activities in this laboratory are the development of small spacecraft thruster systems (see the Space Propulsion Laboratory) and researching issues associated with the distribution of function among satellites. In addition, technology is being developed for spaceflight validation in support of a new class of space-based telescopes that exploit the physics of interferometry to achieve dramatic breakthroughs in angular resolution.

MIT STAR Laboratory
Space Telecommunications, Astronomy and Radiation Laboratory

The STAR Laboratory, part of the Space Systems Lab, develops instruments and platforms for observing weather systems on Earth and extraterrestrial planets, and for measuring space weather, the flow of highly energetic particles that originate from our Sun. STAR Lab specializes in weather sensors, space weather (radiation) sensors, and communications systems, precision attitude control systems, and technology demonstrations using shoebox-sized spacecraft known as CubeSats. Weather sensors currently include passive microwave radiometers and Global Positioning System radio occultation receivers. Radiation work includes developing scintillators for CubeSats, characterization of radiation sensitivity of common CubeSat electronic components, and development of self-aware algorithms for spacecraft telemetry anomaly detection and performance monitoring. STAR Lab research also focuses on the challenging problem of how to efficiently get collected data from small satellite platforms back down to the ground using high data rate laser communications systems with advanced and miniaturized pointing and tracking capability. STAR Lab research helps us to understand weather systems on Earth and other planets, helps us to predict and prepare for Solar storms, and improves our ability to get data from small space platforms to the data centers and users on the ground.


The SPARK ( Sensing, Perception, Autonomy, and Robot Kinetics ) Lab works at the cutting edge of robotics and autonomous systems research for air, space, and ground applications. The lab develops the algorithmic foundations of robotics through the innovative design, rigorous analysis, and real-world testing of algorithms for single and multi-robot systems. A major goal of the lab is to enable human - level perception, world understanding, and navigation on mobile platforms (micro aerial vehicles, self-driving vehicles, ground robots, augmented reality). Core areas of expertise include nonlinear estimation, numerical and distributed optimization, probabilistic inference, graph theory, and computer vision.

Technology Laboratory for Advanced Materials and Structures
Technology Laboratory for Advanced Materials and Structures

The Technology Laboratory for Advanced Materials and Structures (TELAMS) is dedicated to providing leadership in the advancement of the knowledge and capabilities of the composites and structures community through education of students, original research, and interaction with the community at large. This leadership continues today at TELAMS, with an emphasis on composite materials, as the research topics span a wide spectrum, from basic understanding of composite materials to their behavior in specific structural configurations, with the ultimate objective of gaining a sufficient understanding of the properties of a composite laminate's basic building block, and how these properties interact to determine properties of laminates and structures made of composite materials. Recently, the focus of the laboratory has broadened into other areas, and thus its renaming. These areas include multi-scale modeling and simulation of the mechanics of advanced materials used in the aerospace industry with emphasis on understanding the influence of micro-structural features of deformation and failure in their effective engineering response, computational modeling in solid mechanics and fluid-structure interaction problems, and design, fabrication, and testing of micro-electromechanical systems (MEMS), along with their associated materials and processes.

MIT Wright Brothers Wind Tunnel with D8 aircraft model
Wright Brothers Wind Tunnel

Since 1938, MIT's Wright Brothers Wind Tunnel has played a major role in the development of aerospace, civil engineering and architectural systems. In recent years, faculty research interests generated long-range studies of unsteady airfoil flow fields, jet engine inlet-vortex behavior, aeroelastic tests of unducted propeller fans, and panel methods for tunnel wall interaction effects. Industrial testing has included helicopter antenna pods, and in-flight trailing cables, stationary and vehicle mounted ground antenna configurations, the aeroelastic dynamics of airport control tower configurations, Olympic ski gear, space suits, racing bicycles, subway station entrances, and Olympic rowing shells, and power-generating wind turbines. A new state-of-the-art Wright Brothers Wind Tunnel, which will be the largest and most advanced academic tunnel in the United States, is scheduled to open in 2020.